Given a particle in Euclidean space, a central force is a force that points toward or away from the origin and depends only on the particle’s distance from the origin. If the particle’s position at ...
The poet Blake wrote that you can see a world in a grain of sand. But even better, you can see a universe in an atom!
Very roughly speaking, F 4 \mathrm{F}_4 is the symmetry group of an octonionic qutrit. Of the two subgroups I’m talking about, one preserves a chosen octonionic qubit, while the other preserves a ...
Despite the “2” in the title, you can follow this post without having read part 1. The whole point is to sneak up on the metricky, analysisy stuff about potential functions from a categorical angle, ...
I’ve been blogging a bit about medieval math, physics and astronomy over on Azimuth. I’ve been writing about medieval attempts to improve Aristotle’s theory that velocity is proportional to force, ...
In Part 1, I explained my hopes that classical statistical mechanics reduces to thermodynamics in the limit where Boltzmann’s constant k k approaches zero. In Part 2, I explained exactly what I mean ...
A physical framework often depends on some physical constants that we can imagine varying, and in some limit one framework may reduce to another. This suggests that we should study a ‘moduli space’ or ...
When is it appropriate to completely reinvent the wheel? To an outsider, that seems to happen a lot in category theory, and probability theory isn’t spared from this treatment. We’ve had a useful ...
The study of monoidal categories and their applications is an essential part of the research and applications of category theory. However, on occasion the coherence conditions of these categories ...
such that the following 5 5 diagrams commute: (for f: x 0 → x 1 f:x_0\to x_1 and y ∈ 풞 y\in\mathcal{C}, we write f ⊗ y f\otimes y to mean f ⊗ id y: x 0 ⊗ y → x 1 ⊗ y f\otimes\operatorname{id}_y: ...
Double limits capture the notion of limits in double categories. In ordinary category theory, a limit is the best way to construct new objects from a given collection of objects related in a certain ...
Here is the statement as I understand it to be, framed as a bijection of sets. My chief reference is the wonderful book Elliptic Curves, Modular Forms and their L-Functions by Álvaro Lozano-Robledo ...